TABLE 9

|                                         | Olivine | Ortho-<br>pyroxene * | Clino-<br>pyroxene * | Quench<br>clino-<br>pyroxene | Quench<br>amphibole | Glass 1 ** | Glass 2** |
|-----------------------------------------|---------|----------------------|----------------------|------------------------------|---------------------|------------|-----------|
| SiO <sub>2</sub>                        | 40.7    | 53.5                 | 53.2                 | 45.6                         | 47.4                | 70.0       | 68.8      |
| TiO <sub>2</sub>                        | _       | 0.2                  | 0.5                  | 3.3                          | 2.2                 | 0.2        | 0.1       |
| $Al_2O_3$                               | 0.1     | 2.5                  | 2.3                  | 9.0                          | 15.5                | 19.3       | 21.0      |
| FeO                                     | 12.1    | 8.1                  | 4.1                  | 8.8                          | 10.8                | 0.9        | 0.6       |
| MnO                                     | _       | 0.1                  | _                    | _                            | _                   | -          | _         |
| MgO                                     | 46.9    | 33.9                 | 17.6                 | 17.2                         | 11.2                | 1.2        | 0.5       |
| CaO                                     | 0.1     | 1.0                  | 20.8                 | 14.2                         | 8.4                 | 5.7        | 7.2       |
| Na <sub>2</sub> O                       | -       | -                    | 0.4                  | 0.8                          | 2.0                 | ≥ 1.5      | ≥ 1.0     |
| K <sub>2</sub> O                        | _       | -                    | _                    | =                            | 0.4                 | 1.2        | 0.8       |
| $Cr_2O_3$                               | -       | 0.9                  | 1.1                  | 0.2                          | 0.1                 | -          | -         |
| $\frac{100 \text{ Mg}}{\text{Mg + Fe}}$ | 87.5    | 88.0                 | 88.5                 | 77.5                         | 65                  | 72         | 60        |
| "H <sub>2</sub> O"                      |         |                      |                      |                              | (2%)                | (16%)      | (15%)     |

Run conditions: 20 kb, 1050°C, 4 hr, Ag<sub>75</sub> Pd<sub>25</sub> capsule.

Run description: Large ( $\geq 10~\mu$ ) euhedral orthopyroxene, olivine and clinopyroxene as outgrowths on orthopyroxene and also as separate crystals. Primary crystals enclosed in glass with quench mica and quench amphibole. Estimated  $\sim 20\%$  melting.  $100~\text{Mg/Mg} + \Sigma \text{Fe}$ ) of sample after run: 85.6.

TABLE 10

|                                | Olivine | Orthopyroxene | Clinopyroxene | Ilmenite |
|--------------------------------|---------|---------------|---------------|----------|
| SiO <sub>2</sub>               | 41.4    | 53.9          | 50.8          | _        |
| TiO <sub>2</sub>               | -       | 0.2           | 0.7           | 59.4     |
| $Al_2O_3$                      | 0.1     | 4.5           | 6.0           | 0.7 *    |
| FeO                            | 12.7    | 8.0           | 4.1           | 25.0     |
| MnO                            | _       | _             | _             | _        |
| MgO                            | 45.2    | 31.6          | 16.3          | 12.1     |
| CaO                            | 0.2     | 0.9           | 20.6          | -        |
| Na <sub>2</sub> O              | _       | _             | 0.6           | _        |
| K <sub>2</sub> O               | _       | <del>-</del>  | 0.1           | =        |
| Cr <sub>2</sub> O <sub>3</sub> | _       | 0.9           | 0.8           | 2.4      |
| NiO                            | 0.4     | _             | -             | _        |
| 100 Mg<br>Mg + Fe              | 86.4    | 87.6          | 87.8          | 46.3     |

Run conditions: 20 kb,  $1000^{\circ}$ C, 4 hr,  $Ag_{75}Pd_{25}$  capsule.

Run description: Common olivine and orthopyroxene laths and minor clinopyroxene in quench amphibole + mica + glass. Accessory ilmenite and spinel included in some orthopyroxene and olivine. Differs from the  $1100^{\circ}$ C run in the absence of *broad* clinopyroxene borders on the orthopyroxene laths.

<sup>\*</sup> Note the similar 100 Mg/(Mg + Fe), Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub> contents of the two pyroxenes in contrast to the orthopyroxene and quench clinopyroxene of table 8.

<sup>\*\*</sup> Glass analyses using stationary beam, Na<sub>2</sub>O values estimated from 10 kb data evaluating the effect of Na volatilization by the electron beam.

<sup>\*</sup> Al<sub>2</sub>O<sub>3</sub> may be too high from matrix interference.

TABLE 11

| Olivine     | Orthopyroxene                            | Clinopyroxene                                                                                     |
|-------------|------------------------------------------|---------------------------------------------------------------------------------------------------|
| 40.2        | 53.2                                     | 51.0                                                                                              |
|             | 0.3                                      | 0.6                                                                                               |
| - 0.0       | 5.5                                      | 5.0                                                                                               |
| 12.6        | 8.5                                      | 4.4                                                                                               |
|             |                                          | dr-41.                                                                                            |
| 46.7        | 30.3                                     | 16.8                                                                                              |
| _           | 1.0                                      | 20.8                                                                                              |
| - 1         | 0.1                                      | 0.6                                                                                               |
| 1 v = 1 t t |                                          | 0.1                                                                                               |
|             | 0.7                                      | 0.8                                                                                               |
| 0.4         | 면 후 내 생                                  |                                                                                                   |
| 86.9        | 86.5                                     | 87.3                                                                                              |
| 00.7        |                                          |                                                                                                   |
|             | 40.2<br>-<br>12.6<br>-<br>46.7<br>-<br>- | 40.2 53.2<br>- 0.3<br>- 5.5<br>12.6 8.5<br>46.7 30.3<br>- 1.0<br>- 0.1<br>- 0.1<br>- 0.7<br>0.4 - |

Run conditions: 20 kb, 970°C, 6 hr, Ag<sub>75</sub>Pd<sub>25</sub> capsule. Run description: Common orthopyroxene, olivine and clinopyroxene (commonly as simply-twinned crystals) together with mica (possibly primary) and spinel (and ilmenite) and minor interstitial glass.

TABLE 12

|                                | Olivine         | Ortho-<br>pyroxene | Clino-<br>pyroxer | Amphibole<br>ne |
|--------------------------------|-----------------|--------------------|-------------------|-----------------|
| SiO <sub>2</sub>               | 40.5            | 53.2               | 51.3              | 44.3            |
| TiO <sub>2</sub>               |                 | 0.4                | 0.3               | 1.1             |
| Al <sub>2</sub> O <sub>3</sub> | 46 <u>L</u> - 1 | 5.4                | 4.6               | 13.6            |
| FeO                            | 13.9            | 8.8                | 3.8               | 5.5             |
| MnO                            |                 |                    |                   | -               |
| MgO                            | 45.1            | 30.5               | 17.0              | 19.1            |
| CaO                            | 0.1             | 0.8                | 21.2              | 10.4            |
| Na <sub>2</sub> O              |                 |                    | 0.7               | 2.4             |
| K <sub>2</sub> O               | -               |                    |                   | 0.5             |
| Cr <sub>2</sub> O <sub>3</sub> |                 | 0.7                | 1.0               | 1.1             |
| NiO                            | 0.4             |                    | -                 | -               |
| 100 Mg<br>Mg + Fe              | 85.2            | 86.1               | 88.9              | 86.1            |

Run conditions: 20 kb, 950°C, 6 hr, Ag<sub>75</sub>Pd<sub>25</sub> capsule. Run description: Common olivine, orthopyroxene, amphibole (small colourless laths), minor clinopyroxene and accessory ilmenite and spinel. No evidence for melting, orthopyroxene does not have borders of (quench) clinopyroxene.

than at 1100°C, and the low  $Na_2O$ ,  $K_2O$  and  $TiO_2$  contents of the primary clinopyroxene shows that the liquid will be enriched in these elements while retaining  $SiO_2 < 50\%$  (because of the increasing importance of pyroxenes as residual phases).

## 5.2.3, 20 kb, 1000°C, 970°C and 950°C

In these runs, although quench phases and glass were present at 1000°C and 970°C, only primary phases have been analyzed. With decreasing temperature the Mg-values of olivine and orthopyroxene \* decrease, with the compositions at 950°C being similar to those at 970°C and 900°C (both subsolidus) at 10 kb. The presence of Mg, Cr-rich ilmenite at 1000°C is noteworthy. This phase is probably present, though not analyzable, in lower temperature runs and would account for the lower TiO2 content of amphibole at 20 kb 950°C than that at 10 kb 970°C and 10 kb 1000°C. In comparing the subsolidus, primary amphibole at 950°C with quench amphibole at 1050°C and 1100°C the main difference is in Mg-value in CaO, TiO<sub>2</sub> and SiO<sub>2</sub> contents. The K<sub>2</sub>O/Na<sub>2</sub>O ratio of the amphibole at 950°C is lower than that of the starting mix and this effect is more marked when the Na<sub>2</sub>O content (0.7%) of the clinopyroxene is also considered. This comparison suggests the presence of a minor K-rich phase, possibly phlogopite or a trace of K-rich melt phase. If a melt phase is present and thus 950°C is slightly above the solidus, then the amount of melt must be too small to affect Mg-values.

The analysis of coexisting pyroxene pairs in these runs shows a similar temperature dependence of the width of the pyroxene miscibility gap at both 10 kb and 20 kb. There is some suggestion that orthopyroxene shows slightly lower CaO content at a given temperature at 20 kb than at 10 kb. The data at 950°C 20 kb support the view that orthopyroxene-clinopyroxene pairs in lherzolites, in which orthopyroxene has < 0.8% CaO and clinopyroxene has > 20% CaO, have equilibrated at T < 1000°C.

## 6. Application of the experimental melting studies to models of the upper mantle

## 6.1. The lithosphere and low velocity zone

The experimental data presented in this paper provide constraints on both geophysical and petrogenetic

\* Because of its readiness to form inclusion-free porphyroblasts or phenocrysts, orthopyroxene is the most easily analysed mineral in the assemblage and thus the best for noting changes in Mg-value, Al<sub>2</sub>O<sub>3</sub> content etc..